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ON ENERGY-OPTIMAL TRAJECTORIES IN THREE DIMENSIONS 

FOR THE TERMINAL PHASE OF SATELLITE RENDEZVOUS 

By Terrance M. Carney 

SUMMARY 

A solution to the problem of finding the energy-optimal trajectory for 
terminal rendezvous with a satellite station in circular orbit by using the 
classical calculus of variations is described. A terminal-stage engine with 
constant thrust and fixed burning time is specified, and both the optimal 
initial conditions and thrust orientation time history are determined by 
appealing to the criterion that the energy gain be maximized. The problem 
is formulated in three di-mensions, with the constraint that the terminal 
stage must turn through a prescribed initial angle between the target orbital 
plane and the rendezvous-vehicle velocity vector. 

Numerical solutions to the two-point boundary-value problem were gener- 
ated by using an adjoint iteration technique. Near-earth orbital rendezvous 
trajectories were calculated far orbital altitudes of 100, 200, and 500 nau- 
tical miles, initial thrust-to-mass ratios of O.2gg and l g ,  and burning 
times of 100 and 200 seconds. The thrust angles for these solutions are 
found to lie very close to the local horizontal in elevation and to maintain 
a nearly constant bearing in azimuth with respect to the orbital plane of 
the station. 

Quasi-optimal trajectories, for which the thrust vector is constrained 
to the local horizontal plane and to a constant azimuth angle with respect 
to the station plane, were computed. These trajectories compare very 
favorably with the optimal case. A degradation in effective characteristic 
velocity of only 0.063 percent is shown in the worst case (high thrust, long 
burning time, low altitude, and maximum plane-change angle). Gravity-turn 
trajectories, which vere computed for the coplanar case only, proved to be 
slightly less efficient than the quasi-optimal trajectories in each case. 
The maximum coplanar effective characteristic velocity degradation is 0.040 per- 
cent for the quasi-optimal mode, as compared with a 0.046-percent degradation 
for the gravity-turn case. 



INTRODUCTION 

Studies of trajectories for satellite rendezvous and of the associated 
guidance problem have appeared frequently in the literature of the past few 
years. A summary of a large sector of this work is presented in reference 1, 
which is particularly valuable for its extensive bibliograpm. Typical 
studies directed toward satellite rerldezvous trajectories are found in 
reference 2 where coasting trajectories for various incremental velocity 
changes at rendezvous are examined. 

A logical extension of previous work is consideration of the finite 
thrust problem, and, in particular,, the generation of optimal thrusting tra- 
jectories. 
to-point transfer in a specified time for examining optimization of the 
coplanar rendezvous problem. 
of motion in an attempt to develop a guidance scheme amenable to onboard 
computat i on. 

Reference 3 uses bounded thrust and a coast to achieve a point- 

This approach treats the linearized equations 

The current paper contains the results of an investigation of terminal- 
stage guidance in three dimensions for rendezvous with a satellite station 
in circular orbit. The particular task was one of determining the initial 
conditions and steering for a constant-thrust vehicle with fixed burning time 
such that the total energy gained during the terminal stage is maximized, 
and a desired change of the orbital plane is achieved. 

Classical techniques of the calculus of variations were applied to 
determine the optimal steering function, and an adjoint iteration technique 
was employed to yield numerical solutions. Rendezvous with a near-earth 
satellite was chosen as a significant problem to demonstrate the method. 
this problem, parametric effects were investigated by varying the ratio of 
thrust to initial mass, the burning time, the station orbital altitude, and 
the required angular change of the orbital plane. 
parameters were: initial thrust-to-mass ratios of O.25g and lg; burning 
times of 100 and 200 seconds; station altitudes of 100, 200, and 500 nautical 
miles; and plane changes up to the limiting capability for each combination 
of thrust and burning time. 

For 

The values of these 

The use of analytical guidance schemes which provide reasonable approxi- 
mations to the optimal solutions is generally more practical than attempting 
to mechanize the exact optimal steering scheme. The basis of such schemes 
is a simplified steering law to specify the thrust direction. Two simple 
laws were investigated. The first, called the quasi-optimal case, was derived 
from inspection of the optimal solutions. This scheme consisted of con- 
straining the thrust vector to the local horizontal and holding a constant 
bearing angle with respect to the satellite orbital plane. The second scheme 
was the gravity turn, where the thrust vector is always alined with the 
velocity vector. These laws were evaluated by comparing their energy gain 
with that of the optimal solution. 
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SYMBOLS 

A 

B 

+k 
C 

E 

F 

f 

g 

hS 

I 

K 

m 

d o >  
n 

P 

r e 

f r 

r 
S 

T 

t 

U 

coefficient matrix $or adjoint differential equation set 

transformation matrix relating initial value perturbations 
to teminal errors 

effective rocket exhaust velocity, ft/sec 

total energy per unit mass, ft2/sec 

modified function to be optimized 

arbitrary function 

acceleration of gravity, ft/sec 

satellite station altitude, nautical miles 

2 

2 

integral 

constant 

mass of vehicle, slugs 

initial mass of vehicle, slugs 

iteration cycle number 

adjoint variable 

radius of earth, ft 

rendezvous vehicle radius from center of earth, ft 

station radius from center of earth, ft 

rocket thrust, lb 

time, sec 

state variable in expanded system 
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total velocity of vehicle, ft/sec 

characteristic veloc ity , ft /s e c 

station velocity, ft/sec 

coordinates of rotating space station centered axes (fig. l), ft 

thrust elevation angle with respect to local horizontal, radians 

angle between rendezvous vehicle velocity vector and station 
velocity, in the station horizontal plane, deg 

gravitational constant, gr ft’/sec 2 

change in energy during rendezvous stage, ft 2 2  /see 

e ’  

effective characteristic velocity, including potential energy 
contribution, ft /see 

differential effective characteristic velocity, ft/sec 

perturbation on state variable u 

thrust elevation angle with respect to satellite reference axes, 
radians 

Lagrange multiplier, ft 

burning time, see 

constraint parameter 

thrust azimuth angle, radians 

rate of station rotation, radians/sec 

Subscripts : 

i,j ,k state and adjoint variable indices 

max maximum 

OPt opt imal 

quasi-opt quasi-optimal 

1,2,3 Lagrange multiplier indices; constraint indices 
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t 

Operators : 

( ‘ 1  
( “  1 

differentiation with respect to time 

second differentiation with respect to time 

(-1 boundary value specified by problem constraints 

6(  1 variational operator 

ANALYS Is 

Formulation of the Problem 

The mathematical model employed for this investigation of satellite 
rendezvous was a mass-particle with three degrees of freedom moving in a 
rotating Cartesian axis system oriented in a satellite station. The station 
was assumed to be in a circular orbit about a uniformly spherical earth. 
These axes and the associated notation are illustrated in figure 1. 

 satellite station 

J 
Y 

- 

\ 
\ 
\ 
\ 
\ 

Z 

-X 

Rendezvous 
ve hic I e 

Satellite r station 

,ine of 
nodes 

Local horizontal L Y  Z 

Figure 1.- Axis system and angle definitions. 
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The equations of motion f o r  t h i s  model are 

' '  T Y = - cos 8 s i n  ~r - 
m 3 

f r 

where 

T T  1 

and 

A rendezvous vehic le  w i t h  constant t h r u s t  d i r ec t ed  along one vehic le  a x i s  
and a constant burning r a t e  w a s  assumed. The angles 8 and $ are the  
con t ro l  va r i ab le s  and may be chosen arbitrarily. Reference 2 contains a 
der iva t ion  of t hese  equations of motion. 

The quant i ty  se l ec t ed  for optimization w a s  t h e  change i n  t o t a l  energy 
over t he  terminal stage. The t o t a l  energy i s  expressed as 

This c r i t e r i o n  w a s  used r a t h e r  than the familiar minimization of expended 
mass i n  order tha t  t h e  burning time of t h e  f ixed- thrus t  engine could be 
spec i f ied  and a l l  the  i n i t i a l  conditions l e f t  free. The phys ica l  i n t e rp re -  
t a t i o n  of the c r i t e r i o n  i s  best i l l u s t r a t e d  by an example. Consider the  
problem of rendezvous from a parking o r b i t  cons is t ing  of an i n i t i a l  boost, a 
coast  period, and a terminal boost. The energy (eq. ( 2 ) )  remains constant 
over any coasting o r b i t .  Since t h e  energy of t h e  satel l i te  s t a t i o n  o r b i t  i s  
f ixed ,  maximization of t h e  change i n  energy over t h e  terminal s tage  leads  t o  
t h e  lowest poss ib le  energy f o r  t h e  intermediate coas t  and hence t o  the minimum 
energy cut-off condition f o r  launch boost. 
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The geometrical boundary conditions for the problem were then left free 
at the initiation of terminal-stage burning except for the specification of 
the angle between the orbital plane of the station and the coasting ascent 
plane of the rendezvous vehicle. It was required that the origin of the 
station-centered coordinates be reached with no relative velocity remaining 
at the specified time of burnout. 

To force satisfaction of the geometrical end constraints, the problem 
was inverted and run backward in time starting from the origin. The boundary 
condition on plane change can then be expressed as 

j l  tan m) = .- 
+ nsps - ")Lo 

For the backward problem, the optimization task becomes one of mini- 
mizing the initial total energy. The integral corresponding to the energy, 
together with the equations of motion (eq. 
(eq. 
equations. Appendix A contains a detailed description of this process by 
which the equations for the control variables, the Lagrange multipliers, and 
their associated boundary values are determined. 

(1)) and the boundary condikion 
( 3 ) )  adjoined as constraints, was varied to determine the Euler-Lagrange 

Trajectories which satisfy the Euler-Lagrange equations and match the 
boundary conditions correspond to relative minimums for the optimization 
problem, neglecting questions of existence and uniqueness of the numerical 
solution. In order to determine the global minimum solution within the 
stated constraints, all possible relative minimums must be rigorously in- 
vestigated. Similarly, to determine the validity of the numerical solution, 
the effect of perturbations on its stability must be determined. For the 
current problem, the axis system employed affords a well-conditioned set of 
equations of motion. Judicious search for alternate relative minimums, 
together with engineering judgment, was used to determine that the results 
represented global minimums. 

Iteration by the Adjoint Method 

Once the differential equations governing the variational problem have 
been written and the requisite number of boundary conditions has been speci- 
fied, the problem is defined in the mathematical sense. Unfortunately, 
equations (1) are nonlinear and must be integrated numerically. 
this problem computable, the two-point boundary-value problem must be con- 
verted to an initial-value problem. 
is to estimate initial values for the unknown boundary conditions, integrate 
over the interval, and then observe the errors in the known end values and 
operate on them to improve the initial estimates. The logical process by 
vhich the end errors are converted to initial-value corrections should force 
convergence to the desired end values within a reasonable number of itera- 
tions. 

To make 

A standard approach to this process 



For this study, an iteration process described in reference 4 was 
employed. 
for the solution of variational problems which are by nature two-point 
boundary-value problems. The iteration process, together with the resulting 
equations for application to this problem, is derived in appendix B. 

This technique has also been employed recently in reference 5 

RESULTS AND DISCUSSION 

Range of Parameters 

Numerical results were generated for the problem of rendezvous with a 
near-earth satellite in circular orbit. The rendezvous vehicle was assumed 
to have constant thrust directed along one vehicle axis and a specified 
thrust-time duration. 
an effective exhaust velocity of 10,000 feet per second (specific impulse 
of 310 sec). 

A constant mass rate was used which corresponded to 

The ranges of parameters chosen for investigation were initial thrust- 
to-mass ratio, burning-time duration, orbital altitude, and plane-change 
angle. The values used in this investigation are tabulated as follows: 

0.23 

1.0 

T, sec 

100 

200 

100 

200 

~ 

0 
- 5  
1.0 
1.5 
0 
1.0 
2.0  
3.0 
0 
2 .0  
4.0 
6.0 
0 
4.0 
8.0 
10.0 

All cases were run for orbital altitudes of 100, 200, and 500 nautic.a& miles. 
To determine the range of the plane-change angle, an upper bound in 
calculated from the following expression: 

P was 

a 



where 

There is a different characteristic velocity 
time combination. 

Vc for each thrust and burning- 

Adjoint Iteration Check 

The combined variational problem and adjoint iteration scheme were tested 
and found to be rapid& convergent even for very poor guesses of the initial 
multiplier values. Table I illustrates the convergence process for two cases. 
The conditions of case 1 are: 
station altitude of 100 nautical miles, and a plane-change angle of 1- 

sum of the errors in end conditions 

T/m(O) = 0.25g, burning time of 100 sec, 
The 

2 -  

6u. ( 7 )  drops seven orders of magnitude 1’2 i 

in four passes. T/m(O) = lg, burning time of 200 sec, 
and a plane-change angle of 10’. 
but the error is seen to be uniformly convergent and no difficulties occurred 
during iteration. Case 2 displayed the slowest convergence of all the cases 
computed . 

Case 2 conditions are 
This more severe case required 12 passes, 

Optimal Trajectories 

The profiles .of the optimum trajectories, together with time histories 
of the thrust vector orientation, are presented in figures 2 to 5. The 
origins of the curves of the thrust elevation angle are displaced for clarity. 
The thrust elevation angle measured with respect to the local horizontal 
exhibits variations with time and required angular change of plane. 
the maximum departure from the local horizontal encountered is less than 
0.055 radian. 
run. 

a 
However, 

The thrust azimuth angle is nearly constant for all the cases 

The results from the optimal trajectories were used to evaluate the 
energy decrement resulting from use of finite burning times as compared with 
impulsive velocity changes. In order to make a direct comparison, effective 
characteristic velocities were calculated from the energy increment realized 
by using the following relation: 

The variation of effective characteristic velocity and of percentage 
velocity differential compared with an ideal single impulse with plane change 
and altitude is shown in figure 6. 
realized decreases with increasing change of orbital plane. 

As would be expected, the energy change 
This decrease . 
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TABLE I.- ADJOEW ITERATION 

Cycle 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

I2 

- .  

hl(i) 

_.___ 

0 

770.5 

678.5 

675.0 

0 

4,846 

429 

-1,940 

-3,567 

.4.516 

-4,960 

-5,134 

-5,194 

-5,213 

.5,219 

.5,=J 

0 

- 7.940 

- 7.633 

- 7.645 

~~ 

0 

-30.62 

-23.32 

-23.76 

-22.97 

-22.78 

-22.75 

-22.76 

-22.77 

-22.77 

-22.78 

-.E. 7a 

.. . . 

0 

7,127 

7,244 

7,246 

0 

17,733 

26,984 

34,818 

39,397 

41,631 

42,528 

42,843 

42,946 

42,977 

42,986 

42,988 

h2(T) 

.- . . . .  

0 

1.197 

3.328 

3.292 

.. 

0 

15.14 

31.18 

34.56 

37.31 

38.52 

38.97 

39.12 

39.17 

39.16 

39.19 

39.19 

A3(r)  

-. 

0 

46.32 

36.19 

35.84 

0 

643.4 

- 324.5 

- 882.3 

1.266 

1,488 

1,590 

1,630 

1,643 

1,648 

1, 649 

~ ~ 6 4 9  

$ 7 )  

0 

- .9176 

- .7944 

- .7923 

0 

-5.687 

- .eo22 

1.881 

3.879 

4.998 

5.493 

5.677 

5.738 

5.757 

5.762 

5.764 
... 

is less marked at higher altitudes, primarily because a smaller addition 
velocity normal to the station plane is required to rotate the orbital 

0 

-.2O38x1O1 

. 3459XlO-’ 

-. 13&%10-‘ 

0 

-. l107X102 

-. 7151 

-. ljOgXlO1 

-. 5354 

-. 1968 

-. 6233x10-l 

-, 1816x10-~ 

-. 5068X10-2 

-. 1379X10-2 

-. ~67gx iO-~  

-. 9680x10-~ 

If 

velocity through the desired angle (orbital velocity decreases with altitude). 
The ratio of characteristic velocities similarly decreases with increasing 
orbital-plane change, which indicates that the cost of finite burning time 
increases with the turning angle, even when normalized by the characteristic 
velocity requirement. 

For the cost criterion, finite burning times have a small advantage 
over impulsive velocity corrections in the coplanar case with the initial 
point unconstrained if only a terminal impulse is allowed. This is not 
totally unexpected, since, in general,, two impulses would be required to 
achieve rendezvous from arbitrary initial conditions, and the sum of the two 
velocity increments would be less than the single increment for an equal 
change in energy. A heuristic explanation for this statement can be drawn 
from consideration of the rate of change of energy 
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CONVERGENCE EXAMPLE3 

64(0) 

-1.197 

-2.130 

,03538 

-0. 1514X102 

- .1603X102 

- .3386X101 

- .275Ox1O1 

- .1203X101 

- ,4562 

- .1517 

- .4653x10-1 

- .1359X10-1 

- .384W10-2 

- .l05&10-2 

-46.32 

10.13 

.35@ 

0.9176 

-. 1232 

-. 002103 

O.5687X1O1 

-. 4885x10' 

-. 2683XlO' 

-_  1998X101 

-. 1llgXlOl 

-. 4953 

-. 1838 

-. 6C96xlO-: 

-. 1877X10-' 

-. 5524XlO-' 

-. 157W10-' 

It is clear that the incremental change in energy is maximized if the vehicle 
is accelerated when the velocity is as high as possible (and with acceleration 
principally along the velocity vector). Hence for this problem, it is advan- 
tageous to thrust before the vehicle reaches apogee (minimum velocity) as long 
as no plane change is required. In the latter case, the advantage of turning 
a smaller velocity vector negates the benefits of accelerating at high veloc- 
ity. 

From inspection of characteristics of the optimal trajectories, a 
quasi-optimal flight was defined for which the thrust vector was constrained 
to the local horizontal plane and held at a constant bearing angle with 
respect to the satellite orbital plane. It was necessary to iterate to 
determine the bearing angle necessary to achieve a prescribed plane change. 

Figure 7 is a typical plot of the losses in effective characteristic 
velocity in the quasi-optimal case. The parameter plotted is differential 
effective characteristic velocity, defined as 

Iv 

nvc, quasi -opt - %,opt nv = 
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Figure 6.- Effect ive c h a r a c t e r i s t i c  ve loc i ty  va r i a t ion  with o r b i t a l  a l t i t u d e  
and inc l ina t ion .  

N 

A negative AV ind ica tes  t h a t  t he  energy gain over t he  quasi-optimal tra- 
jec tory  i s  l e s s  than t h a t  over t he  optimal t r a j ec to ry .  Note t h a t  t he  losses  
decrease and then increase with increases  i n  orbi ta l -plane change. This 
var ia t ion  can be cor re la ted  with t h e  time h i s t o r i e s  of optimal t h r u s t  eleva- 
t i o n  angle i n  f igu res  2 t o  5 where it can be seen t h a t  t h i s  angle most c lose ly  
approaches zero fo r  medium orbi ta l -plane changes. The comparison between 
optimal and quasi-optimal paths  i s  very favorable,  which ind ica tes  that 
guidance modes based on t h e  quasi-optimal path should be highly e f f i c i e n t .  
The maximum penal ty  f o r  using the  quasi-optimal guidance mode occurs for the  
maximum plane change and i s  only 0.063 percent for t he  worst case encountered 
(T /m(O)  = Ig ,  I- = 200 see,  hs = 100 nau t i ca l  m i l e s ) .  

A second s impl i f ied  f l i g h t  path, t he  gravi ty- turn t r a j ec to ry ,  w a s  t e s t e d  
f o r  t he  coplanar cases. 

I n  t h e  grav i ty  turn ,  t he  t h r u s t  i s  always co l l i nea r  with t h e  veloci ty  
vector which l i e s  c lose  t o  t h e  l o c a l  hor izonta l  f o r  rendezvous with a 
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Figure 6. - Concluded. 

T 
T =  100 see. ( d )  = lg;  T =  200 sec. T (4  qg = 1g; 

satellite. in  c i r c u l a r  o r b i t  when t h e  ve loc i ty  ga ins  over t h e  terminal  s tage  
a r e  of t he  order considered here. The r e s u l t a n t  e f f ec t ive  cha rac t e r i s t i c  
v e l o c i t i e s  were ca lcu la ted  by using equation ( 5 )  and are l i s t e d  i n  t a b l e  11, 
together  w?'.th comparable f igu res  f o r  t he  optimal and quasi-optimal cases. 

The quasi-optimal mode proved t o  be s l i g h t l y  more e f f i c i e n t  than the  
gravi ty- turn mode. 
degradation of 0.040 percent f o r  t h e  case where 
and 

f o r  t h e  g rav i ty  turn.  

Ef fec t ive  c h a r a c t e r i s t i c  ve loc i ty  showed a maximum 
T/m(O) = l g ,  T = 200 sec, 

hs = 100 nau t i ca l  miles,  as compared with a 0.046-percent degradation 
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TABLE 11. - EFBECTTVE CHARACTERISTIC VELOCITY FOR COPLANAR CASE 

~ 

T 
" 

0.25 

1.0 

~ 

0.25 

1.0 

0.25 

1.0 

~ 

T, sec 

100 

200 

100 

200 
- 

100 

200 

100 

200 

100 

200 

100 

200 

AVc ,opt '  
f t / s e c  

774.26872 

1,493.2660 

2,791. aa51 

4,977.6283 

774.2619E 

1,493.1625 

2,791.7075 

4,976.2501 
-~ ~- 

774.25523 

1,493.0751 

2,791.7033 

4,975.0704 

- 
AV, f t / s e c  

Quasi -optima 

-0.00201 

- .0591 

- ,1049 

-1.9763. 

-0.00162 

- .0468 

- ,0849 

-1.9188 

-0.00127 

- ,0375 

- .0682 

-1.6754 

Gravi ty  t u r  

-0.00202 

- .0592 

- ,1101 

-2.2ajg 

-0.00163 

- . o w  

- ,0898 
-2.1217 

-0.00130 

- .0389 

- ,0724 
-1.8387 

~~ 
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CONCLUDING REMARKS 

Energy-optimal trajectories for terminal-stage rendezvous with a 
satellite station in circular orbit which used a constant-thrust rocket with 
a fixed burning time have been derived by using the calculus of variations. 
The problem is three dimensional, including the constraint that the terminal 
stage is to turn through a given initial plane-change angle. Numerical 
solutions to the resulting two-point boundary-value problem have been gener- 
ated by using an adjoint iteration technique. 

Near-earth orbital rendezvous was examined for orbital altitudes of 
100, 200, and 500 nautical miles, initial thrust-to-mass ratios of 0.25g 
and lg, and burning times of 100 and 200 seconds. 
thrust angles lie very close to the local horizontal in elevation, and are 
nearly constant with respect to the target orbital plane in azimuth. 

The resulting prescribed 

Quasi-optimal trajectories were computed by holding the thrust vector 
in the local horizontal at a fixed azimuth angle. These trajectories, which 
show a maximum degradation in effective characteristic velocity of 0.063 per- 
cent, compare very favorably with the optimal trajectories. Gravity turns 
were also run for the coplanar case. 

The quasi-optimal path proved to be the more efficient of the simplified 
trajectories. A degradation in effective characteristic velocity of 
0.040 percent was shown for the worst coplanar case as compared with 0.046-per- 
cent degradation for the gravity turn. 

Manned Spacecraft Center, 
National Aeronautics and Space Administration, 

Houston, Texas, March 26, 1963. 



APPENDIX A 

OPTIMIZATION OF ENERGY CHANGE FOR NONLINEAR EQUATIONS OF MOTION 

The description of the problem of rendezvous of a mass-particle with a 
satellite in circular orbit is provided by the following equations of motion: 

.. 
Y = E  cos 8 sin JI - Y+ 

f r m 

T * .  

~ = - - s i n ~ - 2 ~ i [ + ( r  m S S (A3 

The variables are defined with respect to the satellite in a rotating system. 
(See fig. 1. ) 
period be maximized. 

It is required that the change in total energy over the burning 
The variational notation used in reference 6 is employed. 

The energy is expressed as 

where 

and the integral to be maximized is 
I- 

I =  f E d t  
0 

where 

$1, $2, and $ Three constraints, 

dynamic equations ( A l )  to (A3) .  A fourth constraint is introduced when it 
arise from requiring satisfaction of the 3' 
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i s  required t h a t  a spec i f ied  change i n  t h e  o r b i t a l  plane of t h e  vehicle be 
made. This cons t r a in t  can be expressed 3 s  

The f i r s t  th ree  cons t r a in t s  a r e  adjoined t o  the  function t o  be optimized with 
Iagrange mul t ip l i e r s  

The i n t e g r a l  t o  be operated on i s  a l t e r e d  accordingly 

7 

and the  va r i a t ion  taken 
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In tegra t ing  by parts i n  t h e  usual  manner 

d t  + (g + A, + A2 $ 

Considering the  boundary conditions,  a l l  t h e  physical  var iab les  a r e  defined 
a t  
rendezvous. 
A t  
otherwise f r ee .  

t = T, s ince it i s  spec i f ied  t h a t  t h e  vehic le  i s  t o  back o f f  from a 
Therefore, a l l  t h e  Lagrange mul t ip l i e r s  are unspecif ied a t  

t = 0, cons t ra in t  equation ( A 6 )  i s  applied,  but  t h e  end conditions a r e  
t = 7 .  

The va r i a t ion  of equation (A6)  i s  wr i t ten  

This r e l a t i o n  i s  subs t i t u t ed  t o  e l iminate  from equation ( A l O ) ,  and the  
fundamental lemma of t h e  calculus  of va r i a t ions  is  appl ied t o  t h e  boundary- 
value bracket.  

6k 

This leads  t o  t h e  following end condi t ions on t h e  mul t ip l ie rs :  

I 
~ ~ ( 0 )  = - h2 t a n  F~TI t = O  

A,(o) = 2 cos e cos J r l  
t = O  m 
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Note t h a t  A2(0)  i s  free, but  ?(O) is defined by equation (A6). 

Again, applying the  fundamental l e m a  t o  the  quan t i t i e s  under the  in tegra l  
and thus s e t t i n g  t h e  coef f ic ien t  of each var ia t ion  equal t o  zero y i e lds  the  
Euler-Lagrange equations. 

3rx2 .. = 2Rs i3 - [(t - 0:) - 5 

f A, r 

s i n  $ s i n  0 
3ry(rs - Z) 

*.  3 m  L 3 8  
5 

f r - r f 5 - (r; - 7f2 - 

) I  + (2 s i n  + - j, cos q cos e 

.. 3yx(rs - Z) 3ry(rs - Z) 
5 
f r 5 - A3 = - 2Rs A, - 

f r 

(i + ms - A )cos q 
t a n  0 I - . - - .  - 

x + - z) - A, 

k - A, 
c t an  IJ = . 

X + ns(rs - Z) - A, 

These equations, together with t h e  cons t ra in t  equations (Al) t o  ( A 3 ) ,  t he  
s i x  boundary values a t  t = 0 spec i f ied  by s t a r t i n g  a t  rendezvous ( a l l  r e l a t i v e  
ve loc i t i e s  and displacements zero) ,  and t h e  s i x  boundary values a t  
equations (A6) and (All), completely specify the  problem. 

t = T f rom 
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APPENDIX B 

EQUATIONS FOR ADJOINT TIERATION 

A general  method f o r  t he  s a t i s f a c t i o n  of dynamic two-point boundary-value 
problems i s  described i n  reference 4. 
zation problem of t h i s  paper. 
first developed i n  general  terms, and then the  s p e c i f i c  subs t i t u t ions  used i n  
solving t h i s  problem a r e  s ta ted .  

This method i s  appl ied t o  the  optimi- 
In t h i s  appendix, t h e  i t e r a t i o n  technique i s  

The s e t  of th ree  second-order d i f f e r e n t i a l  equations (eqs. (1) t o  ( 3 ) ) ,  
(A13) ), i s  considered together  with the  associated Lagrange mul t ip l i e r s  (eq. 

as the  equivalent set of 12 f i r s t - o r d e r  d i f f e r e n t i a l  equations: 

where 

u p )  = u,o 

u = f i ( U '  t )  
i j '  

(i = 1, 2, . . ., 6) 

U . ( T )  = q7 (i = 6, 7, . . ., 11) 
1 

The var iab le  6ui i s  defined as a f i r s t - o r d e r  per turbat ion about u 

The equations ad jo in t  t o  t he  s e t  of equations (B2) a r e  described by 

If t h e  set of equations ( B 2 )  i s  mult ipl ied by 

( B 3 )  by 6ui and the  r e s u l t i n g  r e l a t i o n s  added and s m e d  on i, then 
p and t h e  s e t  of equations 
i 

~ 

i i j  J i j  

It i s  seen t h a t  t h e  right-hand s ide  vanishes because of t h e  symmetry of t he  
indices .  Final ly ,  in tegra t ion  of equation ( B 4 )  from t = 0 t o  t = T y i e l d s  
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t he  des i red  ad jo in t  r e l a t ionsh ip  

i i 

Now, if SU. (T)  i s  defined as e r r o r  observed i n  t h e  end boundary values 
1 

It i s  seen t h a t  equation (B5) gives a means of r e f l e c t i n g  these  terminal 
e r ro r s  back t o  determine i n i t i a l  value improvements. 

To determine t h e  s i x  required values of  6ui(0), t h e  ad jo in t  equations 

( B 3 )  a r e  in tegra ted  backward from t = 7 t o  t = 0 f o r  s i x  d i s t i n c t  s e t s  of 
end conditions. For convenience, these  end conditions were chosen t o  be 
i d e n t i c a l l y  zero except f o r  one value f o r  each s e t  which corresponds t o  a 
known end condition. 

P i ,k(T)  Z2 (k = i + 5 )  

( k # i + 5 ;  i = l ,  2 , .  . ., 12; k = l ,  2 , .  . ., 6) 

Once t h i s  i n t eg ra t ion  is  performed, t h e  r e s u l t i n g  values a r e  subs t i t u t ed  in to  
equation (B5 ) 

i 

and t h e  s i x  equations yielded a r e  solved simultaneously for 

Finally,  improved i n i t i a l  estimates a r e  ca lcu la ted  
6ui(o). 

Ui(0) = Uiii(0) + 6Ui(0) (i  = 7 , 8 ,  . . ., 12) 

This i t e r a t i o n  process i s  cycled u n t i l  t h e  end e r r o r s  f a l l  within a desired 
tolerance.  

It must be noted t h a t  t h e  6ui(0) cor rec t ions  only s a t i s f y  conditions 

f o r  s m a l l  pe r turba t ions  about t h e  nominal solution. An add i t iona l  tes t  w a s  
provided i n  t h e  a c t u a l  mechanization of t h e  problem t o  prevent t h e  computa- 
t i o n  from diverging if t h e  i n i t i a l  e r r o r s  were too  la rge .  This t e s t - r e q u i r e d  
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satisfaction of the relation 

Now the substitutions required to state the explicit problem are defined 
as : 

.. 
u g = Y =  f6 %2 = i 2  = f12 j 

The desired boundary values on 6u (eq. (B2)) are i 

~u.(T) = 0; i = 1, 2, . . ., 6 - 
1 

t, =O 
6u7(0) = - A, tan P ( O )  - 

6ug(0) = cos 0 sin - 

- T 
2 s  m 6ul1(0) = A R tan P ( O )  - - sin e - 

'3 I t=O / 
Equation (B2) is not integrated since all of its boundary values cannot 

be specified. Equation (B3) is integrated, and since it is linear and will 
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be used with s i x  d i s t i n c t  s e t s  of s t a r t i n g  values on 
t r ea t ed  as a vector-matrix equation. 

pi, it i s  most e a s i l y  

where the  matrix [PkJj] i s  of dimension 12 x 6 and [Ai,k] i s  a 12 x 12 

square matrix. In t he  matrix rp1, t he  j columns a r e  associated with the  
L A  

s ix  s e t s  of end conditions. The matrix [ p ( ~ ) ]  i s  defined as 

P i , j ( T )  = 0 

P i , j ( T )  = 0 

P i , j ( T )  = 1 

(i = 1, . . ., 5 ,  12) 

(i = j + 5 = 6, 7, . . ., 11) 

Integrate  [;] 
t = T, the  following r e l a t i o n  i s  solved t o  f ind  the  required i n i t i a l  improve- 

from t = 0 t o  t = T together with the  s e t  ;-. A t  i 

ment s : 

where {~UJ i s  a s i x  vector and [ B] i s  a 6 X 6 matrix defined from the  

C P I  as elements of 

where 

j = 1, 2, . . ., 6 
i = 7, 8, . . ., 12 

This process i s  equivalent t o  the  so lu t ion  of equation (B8). 

The elements of a r e  l i s t e d  below, where missing elements a r e  

understood t o  be zero. 
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he 3 y x ~  
ax 

T 
5 = ;;; s i n  8 s i n  $ - - 
f r 

a' sin q cos e i a i  
- -% - ax cos Ji  s i n  0 

? ab - ax cos e 



ae e cos $ - + cos e s i n  $ 
2,2 m ai a i  

air 
ae  0 s i n  $ - - cos 8 COS $ 

2,4 m ai 

T ae 
2% ax 

A  COS^^- 2,6 m 

cos q s i n  8 - - a' s i n  j r  cos 8 ab 
air a i  

- -  

= 2 c[e s i n  cos 0 - s i n  + - cos q s i n  8 - 
A2, 10 m (: ) 1:: . 

I ae 
a t  a i  

+ - s i n  q s i n  8 - ~ Y L  cos q cos 8 

- Os s i n  $ . c o s  0 a - - ab cos .) 
ax a i  

($241 



3uxy 
5 

= -  
5 9 2  n 

'f 

? ae 
ak air = $(sin e cos e - -+ cos e s i n  ~r 

_ -  - 1  
493 
A 



a e  A = x ( s i n  e sin $7 - cos e cos Ji  9) 
ay a Y  4,4 m 

T ae A = - C O S e -  

a? 4,6 m 

A4,8 = - (los - i cos 9 cos e + 1 cos @ + s i n  $ s i n  e 7 ) (: ) 1:: 
ab & 
ay ay 

- 7 cos Ji  s i n  0 - - s i n  Ji  cos 8 

+ 0 cos $ s i n  0 + cos Ji  + $ s i n  c 
( B 4 l  ) 

J 

ae  9) + 3YX('s - z> 
5 
f r az = T(s in  0 cos Ji  - + cos 8 s i n  Ji  52 m aZ 



ae As, m T (  az 5 
f r az = - s i n  8 s i n  @ - - cos 0 cos $ 

T 

f r 

+ s i n  @ sin e +(: s i n  @ - j r  cos @ cos e 1 12 

1 r 
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- ~ [ i  cos 0 - (as  cos + - i ) s i n  a0  

- Rs s i n  $ cos 0 3 az - ab cos 0 

m m  

T ae  
az 

A = - s i n  0 cos Jr - - 6,2 m 

ae  
a i  A ~ , ~  = m s i n  e s i n  J ,  - 

6,5 = - A 

A6,8 = - I kS - cos 9 ) cos e +- (i - cos  v + s i n  q ) s i n  e 1:: 7 

ab 
az a i  

- 7 cos s i n  e - a s i n  cos e 

f r  1 

a i  
az a i  

+ 7 s i n  + s i n  e - cos Jr cos 8 

- - IQ: cos 8 - as cos 
ae a i  

12 m ( * )  ]a i  a i  
- 0 s i n  e - - - cos 0 I 
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A = - 1  
8?7 

, 

s i n  q s i n  e + s i n  $ - $ cos  

s i n  + cos e i cos $ s i n  8 - ab -ah, 
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cos s i n  e + - cos + + j, s i n  $)cos je (t 
s i n  $ s i n  0 - - cos J, cos  e ab + -  

ah2 aA2 

& ab - R s i n  J, cos 8 - - cos  e )  
S ah2 3A2 

50,s = - 1 

T ae 
ah, 

= - s i n  0 cos J, - ‘11,2 m 
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ae  s i n  e s i n  II, - 
%1,4 = ah3 

ae 

/- 

Cos J, + J, s i n  cos J ,  s i n  8 

s i n  J ,  cos 8 - - 
5 m 

rn 
10 

- (i s i n  - J, cos $)s in  4% + 

COS II, s i n  8 
T a6 

A12, 8 = - 2Rs + - -  m 3h3 

- 1  - -  
q2,11 

ab s i n  s i n  0 5 

cos 3 



where 

a; 
a i  

R s i n  $ cos I/I 

x + ns(rs - Z) - l1 
- -  & -  S 

az - * 

2 R cos $ cos 0 8 0  S - a x = - .  x + ns(rs - Z) - A, 

cos2$ s i n  e cos 0 ae 8 0  

all 
- -  a 0  - -  

a i  X + Qs(rs - Z )  - A, 

a i  - -  a 0  s i n  $ cos 41 s i n  0 cos  0 - ae  _ - - -  - - -  . - -  
a Y  x + R s ( r s  - Z) - A, 

a 0  ab 
a i  ir + %('s - z) - A, aA3 a i3  
ae 2 

= - - = - -  cos J ,  cos 0 - = -  



6 = {F cos q + 12 - 0;) - -1 s i n  '> . cos J ,  

x + a s p s  - z) - A, 

cos  J ,  

r f x + as(rs - z) - A, 

/- 

1' cos  $ 

x + ns(r - z) - A, 
S 

39 



40 



+ [ - f  
cos J, cos e 

cos + sin e . 
- 5  r f I >  x + - z) - A, 

( s i n  20 s i n  + 

cos2J, . . .  cos 0 - cos 20  cos + s i n  + sin 
+ ns(rs - Z> - A ~ ] '  J 

) 
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2 R cos  cos 0 
S 

+ ils(rs - Z) - A , ] ~  

s i n  20 
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cos2$ cos 0 - ill(. + cos 28 s i n  $ cos 4, s i n  ) [. + os(Ts - z) - A132 

- psi - x(2 - ns2) - 9 cos *€) [ .  cos cos e 
x + a s p s  - z) - 
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